Phase-matched electric-field-induced second-harmonic generation in Xe-filled hollow-core photonic crystal fiber.

نویسندگان

  • Jean-Michel Ménard
  • Philip St J Russell
چکیده

Second-order nonlinearity is induced inside a Xe-filled hollow-core photonic crystal fiber (PCF) by applying an external dc field. The system uniquely allows the linear optical properties to be adjusted by changing the gas pressure, allowing for precise phase matching between the LP01 mode at 1064 nm and the LP02 mode at 532 nm. The dependence of the second-harmonic conversion efficiency on the gas pressure, launched pulse energy, and applied field agrees well with theory. The ultra-broadband guidance offered by anti-resonant reflecting hollow-core PCFs, for example, a kagomé PCF, offers many possibilities for generating light in traditionally difficult-to-access regions of the electromagnetic spectrum, such as the ultraviolet or the terahertz windows. The system can also be used for noninvasive measurements of the transmission loss in a hollow-core PCF over a broad spectrum, including the deep and vacuum UV regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution.

We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable ab...

متن کامل

Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers

Phase-matched four-wave mixing is demonstrated for millijoule nanosecond pulses guided by photonic bandgaps of hollow fibers with a two-dimensionally periodic cladding and a core diameter of 50 m. Raman resonances related to the stretching vibrations of water molecules inside the hollow fiber core are detected in the spectrum of the four-wave mixing signal, suggesting phase-matched coherent ant...

متن کامل

Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.

The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser sourc...

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

Partially liquid-filled hollow-core photonic crystal fiber polarizer.

A compact fiber polarizer is demonstrated by the filling of selected air holes of a hollow-core photonic crystal fiber (PCF) with a liquid. The liquid-filling results in an asymmetric waveguide structure, leading to a large polarization dependent loss. A 6 mm long ethanol-filled PCF exhibits a polarization extinction ratio of ∼18 dB over a wavelength range from 1480 nm to 1600 nm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 40 15  شماره 

صفحات  -

تاریخ انتشار 2015